Where have all the phases gone?
Using multiclock propagation in PrimeTime

Paul Zimmer

Zimmer Design Services
1375 Sun Tree Drive
Roseville, CA 95661

paulzimmer@zimmerdesignservices.com

website: www.zimmerdesignservices.com

ABSTRACT

Primetime allows multiple clocks to propagate ingllal, allowing multiple operating modes to be
timed in a single run. The paper will cover exaragéwhen and how to use multiclock
propagation as well as some new (2006.06 and 2Pp&atures that make multiclock
propagation much easier to use.

Table of contents

1 Introduction - What is multiclock propagation amby is it useful.ooooiiiiiiimeee. 3
2 Using multiclock propagation to time a muxed @UEQIrCUILoveveeueeriiinneeeee e 4
A R [od [o1 U | SO PP P PP PP 4
2.2 Timing using MUItiCIOCK Propagationcciooieeiuieieii ettt e e et e e e e et e e eenran s 5
ARG T O (o o3 Qo | (011 o 1SRRI 7
2.4 The promiscuous ClOCK ProBIEM......... .ottt e et aeeaanas 10
2.5 A new solution to this old problem — the —comational SWItCh...............viiiiiiiiiii e, 12
2.6 Avoiding the generated clock entirely: the erefce SWItCh.oooviiiiiiiiiiii e, 13
3 Using multiclock propagation to time a sharedad@hput piNS.............ccceveviiieiiiieiinenee. 16
N A I [ol o1 | S PP PUPPPPPTRRR 16
3.2 Timing using MUItiClOCK Propagationcoiooiiiini i et e e et e e e e eaa e e aeeeaas 17
3.3 ClOCKS BVEIYWREIE! ... et ettt e e e et e e e ettt e e e e e et e e e e eabanaaaans 17
3.4 The new clock Killer COMMEANDuceemmmiie e e e e et et e e e e e e e e eeeeennnnes 20
4 A more complex example — a multi-mode OULPULUBIC.uvieivniiiiiiiieeeeiie e e 22
o R I o TN ol (o1 PP PRSP PP 22
A B (R (= L= To PSPPSR 24
4.3 Creating the PLL 1A CIOCKS. et e e et e et e e et e e e e et e e e eaaanas 27
4.4 High-SPEEA MOUES ...ttt et e e et b e e e e et e e e e etba e eeeetan e aaeennnn 30
o R (o To L= I R PP P P PUPPPTPPPPPTP P 30
4.4.2 The HS OULPUL CIOCKciiiiii et sttt ettt e et et ae e e et e e e e e et e e e aeebbaaaaaes 32
443 MOOE H2 ... ettt e e ettt ettt et e e ee e ettt ettt et e e e e aaaaaaaaaaaaaeaaaaaaa 38
4.5 LOW-SPEEA MOUES ... ittt eeeem oottt ettt oo e ettt e e et e aa e et ba e et e eean e e eeebban e aaaeennnaeaeennnd 41
T R (o o L= N TP PPPPPTPURTPP 41
4.5.2 Creating the ClOCKS.... ..o et e et et e et eeeaba s 41
4.5.3 Handling the OULPUL CIOCK..........ciiiii e eeeeees ettt eeeeaan s 43
A.5.4 MOOE L2... .ttt ———nt bbbt b e et et e e e e e et e e e e aaaaaaaaaas 46
4.6 Other CONSIOEIALIONS.ceeeiiutitt ittt e e e ettt e e et bbb e e e e e e e bbb b e e e e e e e e e et e e ns bbb e e e e e e e 49
4.6.1 H*mode diVide-DY 2 ClOCKScouuuiiiiee et 49
A.6.2 ISSEI _SEUINQ. ... e eiiiit ettt ettt et et b e nea e e ettt e e e ebba e e eata e e aeanaas 49
G TRC T ©7o] o (o] I (o T [T TSP 50
I O (o] 11 13 o o PSPPI 52
6 ACKNOWIBAGEMENISceiiiiiiii et e e e et e e e e e e e et eeeana s 53
A = =] (=] (=] (07 54
ST N o] 1= o [0 [G PSP 55
8.1 Complex Circuit at FUIl PAQE SIZEcoeeeiiiiiiiiei ettt e et e et e e e e eaanas 55

SNUG San Jose 2007 2 Where have all the phases gone?

1 Introduction - What is multiclock propagation and why is it useful.

Back in 2001, | presented a paper called “Complexking Situations in PrimeTime” (ref [1]).
In that paper, | discussed the issue of multiplextedks using the following example:

ini[> ——{ > 12

f2

f1

bpo k[>—

(mux)

X17X > >
’,

limeclkw
Sel_line[:>~————J

Figure 1-1

In those days, if you just created the two inpatks$, only one would propagate, depending on
the set_case_analysis value applied to sel liheo $et_case analysis was applied, the one that
propagated was the last one declared. The onlytevagrrectly time this circuit in those days
was to run PT twice, using set_case_analysis &xtsaldifferent clock in each case. Primetime
did not at the time have any way to propagate plaltlocks on the same net in parallel.

This feature (multiclock propagation) was addedtthereafter, but was turned off by default
for the first few years. It is now on by default.

So, why use it? Well, for one thing, it reduces tlimber of PT runs required to tape out. With
all the corners being run these days, cutting dowthe number of base PT runs can save a lot of
time and effort.

Perhaps a more important reason to use multiclogggmyation is to get accurate noise analysis.
Using multiple PT runs can sometimes lead to oveplymistic noise analysis, since some clocks
that will be running on a real die might not belged in that PT run.

Another reason to use multiclock propagation ieé&on the techniques so that they can be
applied to synthesis and physical design toolkenftiture. Timing-driven synthesis and physical
design results are only as good as the constrantsmulticlock propagation is the only way to
let the tools “see” the whole optimization problatronce.

Also note that the alternative to multiclock progagn, using set_case_analysis, has its own

problems. Synthesis and layout tools will somesifmeild structures (using xor or an equivalent)
that stop the case_value from propagating.

SNUG San Jose 2007 3 Where have all the phases gone?

2 Using multiclock propagation to time a muxed outputcircuit

2.1 The circuit

Suppose a set of output pins will be shared betweennterfaces, one of which runs at half the
speed of the other. The output stage might Idakthis:

0
Isdata_reg|
]
z
dout
n D]
D Q CP QN
(O——
S ¢ datamux
dout_reg
div2olk_reg
»}]
P
clk P an T O_g‘L
D= L
hsdata_re i . clkout
n
or gt s clkmux

sel_hs

>
Figure 2-1

divclk_reg creates a divide-by 2 clock, which isrttused to clock the low-speed interface logic
(represented by Isdata_reg). The original, higtedpclock is used to clock the high-speed
interface logic (represented by hsdata_reg). Thpuds of these logic blocks, and their clocks,
are then muxed into a final output flop and ont® dlaitput clock pin clkout to form a source-
synchronous interface.

SNUG San Jose 2007 4 Where have all the phases gone?

The clock and data flow look like this:

2] 3
Isdata_reg) I .
o Hiahspeed da
g . N dout
D Q CP :)%QL
S ¢ datamux
J dout_reg
div2olk_reg
0 P —
Clk . . oP aM
O hsdafa_re o clkout
s Z 'Y
o ~ g s clkmux Highspeed cloc
sel_hs k Jj J
>
Figure 2-2
e 5
Isdaty/ reg . Lowspeed da
N . N dout
° - ey s - ™
¢ datamux
dout_reg
div2dlk_reg
2] g
Clk . . oP aM
- —_— O hsdata_re L Z‘ clkout
\ 5 > >
o an s clkmux
1 Lowspeed cloc
sel_hs
>
Figure 2-3

2.2 Timing using multiclock propagation

Rather than use set_case_analysis to control thesrand using two PT runs, we can time both
modes simultaneously using multiclock propagation.

First, | want to make sure multiclock propagatison:

set timng_enable_multiple_clocks_per_regtrue

SNUG San Jose 2007 5 Where have all the phases gone?

| also turn off the switch that causes PrimeTimereate dummy input constraints:

set timng_input_port_default_cl ock false

And | use a new(er) switch that will cause all thecks | create to be propagated:

set timng_all_clocks_propagat ed true

Now we create the input clock hsclk:
set hsperiod 1.0

create_cl ock -period $hsperiod [get_ports clk] -name hsclk

Then we create the divide-by 2 clock Isclk for Ispeed mode:

create_generated_cl ock \
-name Isclk \
-source [get_attribute[get_cl ocks hsclk] sources] \
-divide_by 2\
-master_clock hsclk \
-add \
[get _pins div2clk_reg/Q]

Next we need to create the two output clocks laglkmd hsclkout. Lsclkout is slaved to Isclk
and hsclkout is slaved to hsclk (this is standaothnique for a source-sync output — see ref [1]).
They are both created on the clkout port, so we omss —add:

create_generated_cl ock \
-name hsclkout \
-source [get_attribute[get_cl ocks hsclk] sources] \
-divide_by 1\
-master_clock hsclk \
-add \
[get _port s clkout]

create_generated_cl ock \
-name Isclkout \
-source [get_attribute[get_cl ocks Isclk] sources] \
-divide_by 1\
-master_clock Isclk \
-add \
[get _port s clkout]

SNUG San Jose 2007 6 Where have all the phases gone?

The report_clock output then looks like this:

Attributes:
p - Propagated clock
G - Generated clock
| - Inactive clock

Clock Period Waveform Attrs

hsclk 1.00 {00.5} p

Generated Master Generated Maste

Clock Source Source Clock
hsclkout clk clkout hsclk
Isclk clk div2clk_reg/Q hsclk
Isclkout div2clk_reg/Q clkout Isclk

Sources

{clk}

r Waveform
Modification

div(1)
div(2)
div(1)

Set appropriate output delays relative to eachudutiock:

set _output_delay -min [expr -1 * 0.1]

set _output_delay -min [expr -1 * 0.2]
-add_delay

set _out put _delay -max 1.2 -clock Isclkout [

2.3 Clock groups
Now let’s look at the timing:
report_timing -to dout

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by hsclkout)
Path Group: hsclkout

Path Type: max

Point Incr
clock Isclk (rise edge) 0.00

or| propagated) 0.50
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32
dout (out) 0.00

data arrival time

clock hsclkout (rise edge) 1.00
clock-network-detay (propagated) 0.16
output external delay -0.50

data required time

SNUG San Jose 2007

-clock hsclkout [
set _out put _delay -max 0.5 -clock hsclkout |

get _port s dout]
get _port s dout]
Isclkout [get _port s dout]

get _portsdout] -add delay

flop clocked by Isclk)

Where have all the phases gone?

data required time 0.66

data arrival time -0.82
slack (VIOLATED) -0.16
Startpoint: dout_reg (rising edge-triggered flip- flop clocked by hsclk)

Endpoint: dout (output port clocked by Isclkout)
Path Group: Isclkout
Path Type: max

Point Incr Path
clock hsclk (rise edge) 1.00 1.00
clock network delay (propagated) 0.16 1.16
dout_reg/CP (dfnrb1) 0.00 1.16r
dout_reg/Q (dfnrbl) 0.32 1.48f
dout (out) 0.00 1.48f
data arrival time 1.48
clock Isclkout (rise edge) 2.00 2.00
clock network delay (propagated) 0.50 2.50
output external delay -1.20 1.30
data required time 1.30
data required time 1.30
data arrival time -1.48
slack (VIOLATED) -0.18

We can see immediately that something is wrongta ainched from dout_reg using Isclk is
being captured by hsclkout, and data launched @tout_reg using hsclk is being captured by
Isclk.

This is because PrimeTime assumes that all clduksld time against all other clocks unless we
tell it otherwise. Interestingly, this is anotl&sue addressed in that old 2001 paper (ref [1]) —
managing all these cross-clock false paths wheme e large numbers of clocks and generated
clocks involved. Since the publication of that @gghe PrimeTime folks have given us a more
elegant solution to this problem as well — set_kclgroups (it seems thep listen).

Set_clock _groups allows you to put your clocks mtoups. All clocks within a group time
against each otherbut none of them time against any clocks in otfreups.

We have two groups — hsclk and Isclk. We can ukkarding to make this simple:

set _cl ock_groups -name muxed_out -logically exclusive \
-group [get_cl ocks "hs*"] \
-group [get_cl ocks "ls*]

! Actually, the command says nothing about the aagithin a group, but since the default is to tiagainst each
other, the effect is that they time against eablerot at least for simple examples.

SNUG San Jose 2007 8 Where have all the phases gone?

Note the use of “-logically _exclusive”. This isqaw switch starting with 2006.06. It tells
PrimeTime that timing paths between these clocksbeasafely ignored (that’s the exclusive
part), but that both clocksan be physically present on the die at the same ti§®. interactions
between these clock groups for noise analysis m@gpoannot be ignored. This differs from
“-asynchronous” in that the noise timing windows determined by the synchronous behavior of
the clocks. We shall see an example of physiealtjusive clock groups in the next section.

Note that I'm being a little bit pessimistic her€he low-speed and high-speed cloaks
physically exclusive downstream of the clock mBut since | expect that the bulk of the two
clock trees are upstream of the clock mux and loas interact, | don’t try to explain this small
piece of the problem to PrimeTime. It is possibl&o this, but it's a little tricky and beyond the
scope of what I'm trying to convey here.

Now our timing looks more reasonable:

report_timing -to dout

Startpoint: dout_reg (rising edge-triggered flip- flop clocked by hsclk)
Endpoint: dout (output port clocked by hsclkout)

Path Group: hsclkout

Path Type: max

Point Incr Path
clock hsclk (rise edge) 0.00 0.00
clock network delay (propagated) 0.16 0.16
dout_reg/CP (dfnrb1) 0.00 0.16r
dout_reg/Q (dfnrbl) 0.32 0.48 f
dout (out) 0.00 0.48 f
data arrival time 0.48
clock hsclkout (rise edge) 1.00 1.00
clock network delay (propagated) 0.16 1.16
output external delay -0.50 0.66
data required time 0.66
data required time 0.66
data arrival time -0.48
slack (MET) 0.18
Startpoint: dout_reg (rising edge-triggered flip- flop clocked by Isclk)

Endpoint: dout (output port clocked by Isclkout)
Path Group: Isclkout
Path Type: max

Point Incr Path
clock Isclk (rise edge) 0.00 0.00
clock network delay (propagated) 0.50 0.50
dout_reg/CP (dfnrb1) 0.00 0.50r
dout_reg/Q (dfnrbl) 0.32 0.82f
dout (out) 0.00 0.82f
data arrival time 0.82

SNUG San Jose 2007 9 Where have all the phases gone?

clock Isclkout (rise edge) 2.00
clock network delay (propagated) 0.50
output external delay -1.20

data required time

data required time
data arrival time

slack (MET)

Isclk now times against Isclkout and hsclk timeaiast hsclkout.

2.4 The promiscuous clock problem

But there’s still a problem. Take a look at tlsing report:

report_timing -to dout -delay min -group hsclkout

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by hsclkout)

Path Group: hsclkout
Path Type: min

Point Incr

clock hsclk (rise edge) 0.00
clock network delay (propagated) 0.16
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32

dout (out) 0.00

data arrival time

clock hsclkout (rise edge) 0.00
clock network delay (propagated) 0.50
output external delay 0.10

data required time

data required time
data arrival time

slack (VIOLATED)

SNUG San Jose 2007

10

flop clocked by hsclk)

Where have all the phases gone?

Why is the clock insertion delay (“clock networkae(propagated)”) of the capture clock so
much larger than that of the launch clock? If v8e tpath full_clock expanded” the issue
becomes apparent:

report_timing -to dout -delay min -path full_clock_ expanded -input -group
hsclkout
Startpoint: dout_reg (rising edge-triggered flip- flop clocked by hsclk)

Endpoint: dout (output port clocked by hsclkout)
Path Group: hsclkout
Path Type: min

Point Incr Path
clock hsclk (rise edge) 0.00 0.00
clock source latency 0.00 0.00

clk (in) 0.00 0.00r

clkmux/I1 (mx02d0) 0.00 0.00r

clkmux/Z (mx02d0) 0.16 0.16r

dout_reg/CP (dfnrb1) 0.00 0.16r

dout_reg/Q (dfnrbl) 0.32 0.48r

dout (out) 0.00 0.48r
data arrival time 0.48
clock hsclkout (rise edge) 0.00 0.00
clock hsclk (source latency) 0.00 0.00

0.00 0.00r

0.00 0.00r

0.32 0.32r

i0) 0.00 0.32r

cIkmux/Z (mx02d0) 0.18 0.50r

clkout (out) 0.00 0.50r
output external delay 0.10 0.60
data required time 0.60
data required time 0.60
data arrival time -0.48
slack (VIOLATED) -0.12

Why is the high-speed output clock hsclkout goimgtigh the clock divider?? This is the
“promiscuous clock” problem | discussed in my 2@@®er “Getting DDR’s Write” (ref [5]).
PrimeTime will back up through any number of sediattogic elements to find the longest path.
Back then, the only way around this at the time wasreate “steering” clocks to force the clock
to take the desired path.

SNUG San Jose 2007 11 Where have all the phases gone?

2] 3
Isdata_reg| o .
0 . Hiahspeed da
Actual Higthspeed |cloc in repge 5 8 Edog
L
[o——
S k datamux
di 4 dout_reg
iv2€lk_reg
=2 Q
Clk ‘y : anN - O_g'L
 — L AL \. ol] - lkout
e —F
G o s clkmux
k DesiredHiahspeed cloc
sel_hs » o
T T s .
>
Figure 2-4

2.5 A new solution to this old problem — the —combinatinal switch

But the PrimeTime folks were listening (again)! 2006.06, they have given us a new switch on
create_generated_clock called “-combinational” te#i$ the tool that the generated clock is a
divide-by 1, and the path from the source to tbelckreation point is purely combinational.

This is true of both of our divide-by 1 output disql have yet to come up with a divide_by 1
clock where this isn’t true), so we can changectbek creation code to look like this:

create_generated_cl ock \
-name hsclkout \

-source [get_attribute[get_cl ocks hsclk] sources] \
-comb \

-master_clock hsclk \

-add \

[get _port s clkout]

create_generated_cl ock \

-name Isclkout \

-source [get_attribute[get_cl ocks Isclk] sources] \
-comb \

-master_clock Isclk \

-add \

[get _port s clkout]

SNUG San Jose 2007 12 Where have all the phases gone?

And that fixes the problem:

report_timing -to dout -delay min -path full_clock_

hsclkout

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by hsclkout)
Path Group: hsclkout

Path Type: min

Point Incr

clock hsclk (rise edge) 0.00
clock source latency 0.00
clk (in) 0.00
clkmux/I1 (mx02d0) 0.00
clkmux/Z (mx02d0) 0.16
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32
dout (out) 0.00

data arrival time

clock hsclkout (rise edge) 0.00
clock hsclk (source latency) 0.00
clk (in) 0.00
clkmux/I1 (mx02d0) 0.00
clkmux/Z (mx02d0) 0.16
clkout (out) 0.00
output external delay 0.10

data required time

data required time
data arrival time

slack (MET)

expanded -input -group

flop clocked by hsclk)

2.6 Avoiding the generated clock entirely: the —refereae switch.

The divide-by 1 (now —comb) generated clock methasl been used for years to time source-
synchronous outputs. But there is another way—=-tlieference” option on set_output_delay.

We create only the high-speed and low-speed clocks:

create_cl ock -period S$hsperiod

create_generated_cl ock \
-name Isclk \
-source
-divide_by 2\
-master_clock
-add \

[get _pins div2clk_reg/Q]

hsclk \

SNUG San Jose 2007

[get _ports clk]

[get _attribute[get_cl ocks hsclk]

13

-name hsclk

sources] \

Where have all the phases gone?

Then we do the set_output_delay statements usithg“bdock” and “-reference_pin”, with the
reference pin being the clkout port:

set _output _delay -min [expr -1 * 0.1] -reference_pin [get _ports clkout] -clock
hsclk[get _ports dout]
set _out put _del ay -max 0.5 -reference_pin [get _ports clkout] -clock hsclk

[get _port s dout]

set _out put _del ay -max 1.2 -reference_pin [get _ports clkout] -clock Isclk
[get _portsdout] -add delay
set _output _delay -min [expr -1 * 0.2] -reference_pin [get _ports clkout] -clock

Isclk[get_portsdout] -add_delay

And set the clock groups:

set _cl ock_groups -name muxed_out -logically exclusive \
-group [get_cl ocks "hs*] \
-group [get_cl ocks "ls*]

SNUG San Jose 2007 14 Where have all the phases gone?

This produces the same timing results. Re-runthiegorevious trace, but with the group set to
hsclk instead of hsclkout:

report_timing -to dout -delay min -path full_clock__
hsclk

expanded -input -group

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by hsclk)

flop clocked by hsclk)

Path Group: hsclk
Path Type: min

Point Incr Path
clock hsclk (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clk (in) 0.00 0.00r
clkmux/I1 (mx02d0) 0.00 0.00r
clkmux/Z (mx02d0) 0.16 0.16r
dout_reg/CP (dfnrb1) 0.00 0.16r
dout_reg/Q (dfnrbl) 0.32 0.48r
dout (out) 0.00 0.48r
data arrival time 0.48
clock hsclk (rise edge) 0.00 0.00
clock source latency 0.00 0.00
clk (in) 0.00 0.00r
clkmux/I1 (mx02d0) 0.00 0.00r
clkmux/Z (mx02d0) 0.16 0.16r
clkout (out) 0.00 0.16r
output external delay 0.10 0.26
data required time 0.26
data required time 0.26
data arrival time -0.48
slack (MET) 0.22

This approach has the drawback, however, thatasfo work in DesignCompiler. Of course,
the “-comb” switch on create_generated_clock ddesatk in DesignCompiler, either.

The generated clock approach provides more fléxiidr controlling the clock path. In simple
cases (no muxing on the clock output), the “-refeee pin” might be simpler, but for more
complex cases, you'll probably still want to usegmted clocks.

SNUG San Jose 2007 15 Where have all the phases gone?

3 Using multiclock propagation to time a shared setfanput pins

3.1 The circuit

Now let’s look at a circuit that shares pins betwego different modes on theput side. Since
these are inputs, there’s no need for muxes. ignals are just routed to multiple places:

D Q D Q
s
hsdin_reg hsdata_reg
CP b~ QN CP i QN
din D Q D Q
| =
Isdin_reg Isdata_reg
CI kl n @> QN CP : QN

Figure 3-1

Notice that the high-speed interface (hsdin_reg} mn rising clocks, while the low-speed
interface (Isdin_reg) runs on falling clocks. Tbe-speed interface is center-clocked. Data is
sourced on rising edges and captured on falinggdg

SNUG San Jose 2007 16 Where have all the phases gone?

3.2 Timing using multiclock propagation

Using the —add switch, we can create both highésped low-speed clocks in the clkin pin:

set hsperiod 1.0
set Isperiod 10.0
create_cl ock -period $hsperiod [get_ports clkin]
create_cl ock -period $lsperiod [get_ports clkin]

-name hsclkin
-name Isclkin -add

Similarly, we apply input delays relative to botbaks to the data input pin din using -
add_delay:

set _input_delay 0.1 -clock hsclkin
set _input_delay 0.5 -clock hsclkin
set _input_delay 0.7 -clock Isclkin
set _input_delay 2.5 -clock Isclkin

-min [get_ports din]
-max [get_ports din]
-min [get_ports din]
-max [get_ports din]

-add_delay
-add_delay

Notice that there’s no “-clock_fall’ on the Isclkimput delay. This is because swurcelaunches
data on rising edges. Which edge the logic captarehas no effect on the set_input_delay
syntax.

As you would expect, this results in messy crossicpaths between hsclkin and Isclkin, so we
use set_clock_groups to disable these paths:

set _cl ock_groups -name muxed_in -physically_exclusive \
-group [get_cl ocks "hs*] \
-group [get_cl ocks "ls*]

This time, however, we use “-physically _exclusibetause these clockannotbe present on the
die at the same time, so they can be treated asaltyuexclusive for both path analysis and noise
analysis purposes.

This can get confusing, so here is a table thatribes the settings and their implications for both
noise and path timing:

Switch Timing Paths Noise Analysis Timing Windows
-asynchronous No Yes Infinite

-logically exclusive No Yes Per Waveforms
-physically_exclusive | No No N/A

3.3 Clocks everywhere!

But there’s another problem lurking here. Redwlt tthe pins are shared by two interfaces, one
high-speed and one low-speed. Obviously the logedgircuit is only required to run at the

SNUG San Jose 2007 17 Where have all the phases gone?

low-speed clock rate. But, because we have creatégropagated both clocks down the same
clock network, both clocks go to all flops. Sow# look at the timing to Isdin_reg, we will see it
being checked against hsclk’s period:

report_timing -to Isdin_reg/D -group hsclkin

Startpoint;ein (input port clocked\by hsclkin)

Endpoint:Ysdin_reg (falling edge-triggered flip- flop clocked by hsclkin)
Path Group: hsctkin

Path Type: max

Point Incr Path
M) 0.00 0.00
network propagated) 0.00 0.00
input external delay 0.50 0.50 f
din (in) 0.00 0.50 f
Isdin_reg/D (dfnfb1) 0.00 0.50 f
data arrival time 0.50

clock hsclkin (fall edge) 0.50 0.50
clocknetwerk-deltay (propagated) 0.00 0.50
Isdin_reg/CPN (dfnfbl) 0.50 f
library setup time -0.12 0.38
data required time 0.38
data required time 0.38
data arrival time -0.50
slack (VIOLATED) -0.12

Since the low-speed circuit captures data on ¢p#idges, there’s no way this will ever work.
Similarly, the flop-to-flop timingnsidethe low-speed block is also being constrainedperate
at hsclk:

SNUG San Jose 2007 18 Where have all the phases gone?

report_timing -to Isdata_reg/D -group hsclkin

Startpoint:
Endpoint: |
Path Group: hsclkin
Path Type: max

Q

Point Incr

clock hsclkin (fall edge) 0.50

cloc k pagated) 0.00
Isdin_reg/CPN (dfnfbl) 0.00
Isdin_reg/Q (dfnfb1) 0.32
Isdata_reg/D (dfnrql) 0.00

data arrival time

clo€k hsclkin (rise edge) 1.00
work delay (propagated) 0.00

Isdata_reg/CP (dfnrgl)

library setup time -0.10

data required time

data required time
data arrival time

slack (MET)

SNUG San Jose 2007

sdin_reg (falling edge=triggered fli
ata_reg (rising edge-triggered flip-

19

p-flop clocked by hsclkin)
flop clocked by hsclkin)

Where have all the phases gone?

The problem is that both clocks go EVERYWHERE:

D Q D Q
s
hsdin_reg hsdata_reg
Hsclk, Isclk go
EVERYWHERE
CP i QN CP i QN
din D Q D Q
| =
Isdin_reg Isdata_reg
Clkin oe QN CP QN
Figure 3-2

3.4The new clock killer command

This is a nasty problem, and until recently theesswo clean solution with PrimeTime. What we
need is a way to “kill” clocks when they go platlkesy aren’t supposed to go. Starting with
2006.06, we have this capability. A “-stop_propagd switch has been added to the
set_clock_sense command. This switch will kill dheck on the specified poirind anywhere
downstream

In the example circuit, there’s no handy placeubtpe set_clock_sense command where it will
propagate downstream to the desired points, scawgust use the command directly on the flop
clock pins:

set _cl ock_sense -stop_propagation -clock hsclkin [get _pi ns "Is*_reg/CP*"]
set _cl ock_sense -stop_propagation -clock Isclkin [get _pi ns "hs*_reg/CP*"]

SNUG San Jose 2007 20 Where have all the phases gone?

D - Q D Q
Kill clocks where they
don’t belont
hsdin_reg hsdata_reg
CP b~ QN CPk i QN
din D Q D Q
| =
Isdin_reg Isdata_reg
clkin .
| e > (‘ X O—>—
Figure 3-3

Now, when we run those reports, we get unconstlgiahs:

report_timing -to Isdin_reg/D -group hsclkin

No constrained paths.

1
report_timing -to Isdata_reg/D -group hsclkin

No constrained paths.
Doing this on the flop clock pins works, but thetsWvis too new for me to be able to comment

on performance. If this is too slow, you might éaw find (or introduce) clock tree buffers that
cover the required flops and put the set_clock esensthese.

SNUG San Jose 2007 21 Where have all the phases gone?

4 A more complex example — a multi-mode output circi

4.1 The circuit

Now let’s apply all this to something a bit morenqmex. Take a look at this circuit:

\—;([.)r z clkout
| |hs zn = —
2
clkoutmux
invsel 51
din
CHOLT
L fo
GKOUTY| D Q :doit
[0 a
CrOUT2)
. %—|—>—\2
clkin CKOUTS)
> 5 loaer LB g divaclk_req s
CKOUTQ%—I_>_ - 10
4 z
CrouTS——) P —— 1" oG Al
3 Z| CR an P
o -
CKOUTEi‘G 5 doutregclkmux
CroUTA>——
clksel[0] '
=
clksel[1]
clksel[2]
lssel
Figure 4-1

The circuit begins with a multi-tap PLL. This Phias 8 taps, each 45 deg behind the previous
tap. The outputs are fed into a mux. The mux wiuigpthen routed to a data output stage. The
mux output is also, along with an inverted versimuted to the clock output pin. It is also
routed to a divider, which can then be sent toothigput flop (muxed with the pre-divider clock)
and (along with an inverted version), can be senhé clock output pin. So, you can toggle data
with any of 8 phases, at full speed or half speed, send it out with either its own clock or an
inverted copy of its own clock.

SNUG San Jose 2007 22 Where have all the phases gone?

Here’s an example of the clock and data path farcait configured for high-speed operation on

tap 5 with a non-inverted output clock:

clkoutmux

clkout

din
CHOUT!
o
SROUTIS—— b qQ clout
i D a
CHOUT2)
) mwz
Cclkin CHROUTS)
[> lokmeF PLLs m‘ﬂ divaclk_reg| oout-rea
CKOUTQm - 0
4
T — z
orouf~—g | ckmux U N oS
GP anN
cKouTeﬁ_yE o= 3 doutregclkmux
CrOUTH—)
7
clksel[0]
= -
clksel[1]
clksel[2]
lssel
Figure 4-2

Here’s an example of the clock and data path farcait configured for low-speed operation on
tap 7 with an inverted output clock:

\—}pr 2 clkout
|| h3 zN 7
S
clkoutmux
invsel (51
din
CROUT:
L s fo)
SROUTIS—— b Q dout
i D a b ' [
CHOUTZ)
L b
clkin GHOUTS) W
e L L R —
P, q 10 [s
crouTs—) Sk bt m— > oS
q an -
Cmm%—‘—f\e > p—— Is doutregclkmux
CKOUTiw
= ———— 7
clksel[0]
[-
clksel[1]
clksel[2]
lssel
Figure 4-3

Depending on the environment the chip is usedny,ome of these modes might be used. Also,
there are several copies of this circuit on theadig each copy might be used differently in the

same installation.

SNUG San Jose 2007 23 Where have all the phases gone?

Even if you wanted to run all those corners, unj@asrun all combinations you might miss noise
issues. So, let’s do it all in one run with mudiek propagation.

4.2 The strategy

So, where do we begin? Well, each mode will hpegegntially) different settings for the control
bits clkset[2:0], Issel, and invsel. Rather thpplathese settings directly using set_case_asalysi
we’re going to create clock paths for each modergfect its settings.

We control the clock paths by creating the corgesterated clocks to force them to go where we
want them to go.

The first thing we need to consider is the creatibthe PLL output clocks. It would be possible
to create the selected clock (reflecting that med#sel setting) for each mode directly on the
correct PLL output. PLL taps that are used by ntba® one mode would have multiple clocks
created on them, and those not used in any modelsl\wave none. It would look something
like this:

4 L — P clkout

|| h3 zN o
clkoutmux

51

din
CROUT:
L s fo
GKOUTY| b Q dout
[o [—ph >
CHOUTZ)
" mwz
clkin CrouTS>——)
> —GKREF PLL8 — (E) diveck_reg k - dout_reg
" o
(=l s Clkmux a 1 ioﬁi
CKOUTE%_‘—:&\G 7 C)—)k 3 doutregclkmux
cKouT?é\'_’
7
clksel[0]
[-
clksel[1]
clksel[2]
lssel
Figure 4-4

SNUG San Jose 2007 24 Where have all the phases gone?

| don't like this approach for a couple of reasof#st, not creating the ‘unused” clocks doesn’t
mean they don’t exist on the real chip. For naisalysis purposes, I'd like all the PLL tap clocks
to exist in every run. Second, the same PLL mightised for one or more other copies of this
circuit. If | create a tap clock on the PLL foparticular mode in instance 1, it will leak into
instances 2, 3, etc.

[14]
"
12
13
[— cllemix >
I7
—=—s0
——151
——52
CKOUTO 0
CROUT1 It
CHouTZ2 1] .
Clock|leaks into
clkin CHOUTS 13 . .
[> > lwar FLLO unrelated circuit
CKOUT4 14
CHOUTS e ——— ,—_/ . _Clkmux1 =z
CKOUTE
CROUT? 17
—=—s0
]
—— 52
Figure 4-5

SNUG San Jose 2007 25 Where have all the phases gone?

Instead, | prefer to create all the PLL tap clockgheir PLL output pins, then create divide-by 1
generated clocks at the mux output pin for eachenadkhis allows the PLL tap clocks to
propagate everywhere they need to for noise asldyst prevents mode clocks for any particular
instance of the circuit from propagating to otlmstances (since each instance has its own clock
mux).

CHOUTO

CHOUTY
CrOoUTZ2

clkin CHOUTS
| =~ |CKREF PLL8

CHROUT4

CROUTE

CHOUTS

CROUTY

Generated clocks created hete,
pointed back to appropriate tap clock.

Figure 4-6

SNUG San Jose 2007 26 Where have all the phases gone?

4.3 Creating the PLL tap clocks

OK, so let’s create the PLL tap clocks. The “Plddrt of this is beyond the scope of this paper
(see ref [4]), but suffice it to say that | prefercreate separate clocks on each output (rather th
negative delays through the PLL). Given this, ¢here two possible ways of getting the phase
shift. We could apply the phase shift as sourtan{ay, or we could create the clocks with the
phase shift built into the waveform.

Either way will work, but the choice will affect wdn edge PrimeTime uses in timing checks.
Since latency is ignored when figuring out whiclir jpd launch/capture edges to use, a source
latency technique will result in all checks usindyahe base (tap0) timing, which may result in
incorrect checks and require multicycle paths. 1Sall apply the shift by creating clocks with
appropriate waveforms.

So, let’s create the 8 phases using the wavefochmigue. The first time | attempted this, | did
this:

for { set phase 0}{ $phase < 8}{ incr phase}{
set offset [expr ($phase / 8)* S$hsperiod]
echo "phase: $phase ; offset: $offset”
create_cl ock -name hsclk_p ${phase} \
-period $hsperiod \
-waveform [|ist $offset [expr $offset + S$hsperiod [/ 2]] \
[get pins PLL8/CKOUT ${phase}]

But this didn’t work. The problem here is a bibda. Here’s the report_clock output:

Attributes:
p - Propagated clock
G - Generated clock
| - Inactive clock

Clock Period Waveform Attrs Sources

hsclk_pO 4.00 {02}

p {PLL8/CKOUTO}
hsck_ pl 4.00 {02} p {PLL8/CKOUT1}
hsck_p2 ~ 4.00 {02} p {PLL8/CKOUT2}
hsck_p3 4.00 {02} p {PLL8/CKOUT3}
hsck_p4 4.00 {02} p {PLL8/CKOUT4}
hsck_p5 4.00 {02} p {PLL8/CKOUT5}
hsck_p6 4.00 {02} p {PLL8/CKOUT6}
hsck_p7 4.00 {02} p {PLL8/CKOUTT}

SNUG San Jose 2007 27 Where have all the phases gone?

All the clocks are the same! What's going on here?

Here’s the echo output:

phase: 0 ; offset: 0.0
phase: 1 ; offset: 0.0
phase: 2 ; offset: 0.0
phase: 3 ; offset: 0.0
phase: 4 ; offset: 0.0
phase: 5 ; offset: 0.0
phase: 6 ; offset: 0.0
phase: 7 ; offset: 0.0

Why's the offset always zero?

Well.... Tcl has variable typing going on under twed. The “for” loop creates “phase” as an
integer. And an integer divided by an integer fte®phase / 8”) results in a (truncated) integer.
So, for phases of 0-7, the expression “$phasealvys results in zero:

pt_shell> echo [expr 7 / 8]
0

But if | force the dividend to be a float, | geetborrect answer:

pt_shell> echo [expr 7.0/ 8]
0.875

Or, for the purist:

pt_shell> echo [expr double (7) / 8]
0.875

Since I'm using $phase as an integer to find thampf[get_pins PLL8/CKOUT${phase}]”, |
don’t want to change the “for” loop index variafhase) to a float. But | can force it to be a
float just for the divide by using “double”:

for { set phase 0}{ $phase < 8}{ incr phase}{
set offset [expr (double($phase)/ 8)* S$hsperiod]
echo "phase: $phase ; offset: $offset”
create_cl ock -name hsclk_p ${phase} \
-period $hsperiod \
-waveform [|ist $offset [expr $offset + S$hsperiod [/ 2]] \
[get pins PLL8/CKOUT ${phase}]

SNUG San Jose 2007 28 Where have all the phases gone?

This works. Here’s the report_clock output:

Attributes:
p - Propagated clock
G - Generated clock
| - Inactive clock

Clock Period Waveform Attrs

hsclk_pO 4.00 {02} p
hsclk_p1 4.00 {0.52.5}
hsclk_p2 4.00 {13} p
hsclk_p3 4.00 {1.53.5}
hsclk_p4 4.00 {24} p
hsclk_p5 4.00 {2.54.5}
hsclk_p6 4.00 {35} p
hsclk_p7 4.00 {3.55.5}

Sources

{PLL8/CKOUTO}
{PLL8/CKOUT1}
{PLL8/CKOUT2}
{PLL8/CKOUT3}
{PLL8/CKOUT4}
{PLL8/CKOUT5}
{PLL8/CKOUT6}
{PLL8/CKOUTT}

Note that “double” is not the only way to forcesthiYou could also do this:

for { set phase 0}{ $phase < 8}{ incr phase}{
set offset [expr ($phase / 8.0)* Shsperiod]

echo "phase: $phase ; offset: $offset”
create_cl ock -name hsclk_p ${phase} \
-period $hsperiod \

-waveform [|ist $offset [expr Soffset

[get pins PLL8/CKOUT ${phase}]

+ $hsperiod

/211 \

The “8.0” will have the effect of forcing the tefi$phase / 8.0” to be a float. Fun with Tcl...

SNUG San Jose 2007

29

Where have all the phases gone?

Having created all the PLL tap clocks with mult@toprop on, what clocks do you suppose are
now going through the clkmux/Z output pin? We sar using the new “clocks” attribute:

pt_shell> get_attribute [get_pins clkmux/Z] clocks
{"hsclk_p6", "hsclk_p7", "hsclk_p5", "hsclk_p4", "h sclk_p0", "hsclk_p3",
"hsclk_p1", "hsclk_p2"}

And they all go through to the divider reg clock ps well:

pt_shell> get_attribute [get_pins div2clk_reg/CP] c locks
{"hsclk_p6", "hsclk_p7", "hsclk_p5", "hsclk_p4", "h sclk_p0", "hsclk_p3",
"hsclk_p1", "hsclk_p2"}

You can also see this using the new get_clock_nitvedjects command:

pt_shell> get_clock_network_objects -type pin hsclk _po
{"clkoutmux/I0", "clkmux/Z", "dout_reg/CP", "clkout mux/12", "hsclkinv/ZN",
"clkoutmux/Z", "clkout", "doutregclkmux/I0", "doutr egclkmux/Z",

"div2clk_reg/CP", "clkmux/I0", "hsclkinv/I"}

Note: For more info on the clocks attribute, arides tips on tracing clock paths, see solvnet
article https://solvnet.synopsys.com/retrieve/009401 .html

Which means, at least for the moment, they all\gayavhere. But my next step will be to create
divide-by 1 generated clocks on the clkmux outpat @ his will block the PLL tap phases from
going any further.

4.4 High-speed Modes

4.4.1 Mode H1

Let's define a mode H1 (for high-speed 1), with fblowing setttings:

set modeH1(clksel_setting) 5
set modeH1(invsel_setting) 0
set modeH1(Issel_setting) 0

This means | want to use tap 5, use the highspaid and | want the output clock to be
uninverted.

Since the clksel setting is 5, | want to creatévale-by 1 generated clock on pin clkmux/Z whose

master is hsclk_p5 and whose source is PLL8/CKOWH® source pin of clock hsclk_p5). | can
do this with the following code:

SNUG San Jose 2007 30 Where have all the phases gone?

create_generated_cl ock \

-name modeH1clk \

-source [get _attribute[get_cl ocks hsclk_p${modeH1(clksel_setting)}]
sources] \

-comb \

-master_clock hsclk_p${modeH1(clksel_setting)} \

-add \

[get _pins clkmux/Z]

A couple of comments on this. First, | have coenated “hsclk_p” with the value of the variable
$modeH1(clksel setting) to form the master cloak@a | have used this as the “-master_clock”
argument, and, via [get_attribute [get_clocks ..UJrses] to get the “-source argument” as well.

Second, notice that | have used “-comb” insteaddofide_by 1”. This is a divide-by 1 clock
with a combinational path from its source, so usikegmb” will avoid some of the promiscuous
clock problems discussed earlier.

We can see what all this results in by using myrf&€ proc (see ref [3]):

renmove_cl ock modeH1clk
&cnd create_generated_clock \

-name modeH1clk \

-source [get _attribute[get_cl ocks hsclk_p${modeH1(clksel_setting)}]
sources] \

-comb \

-master_clock hsclk_p${modeH1(clksel_setting)} \

-add \

[get_pins clkmux/Z]

Which results in:

Doing command: create_generated_clock -name modeH1c Ik -source { PLL8/CKOUTS5 }
-comb -master_clock hsclk_p5 -add { clkmux/Z }

My new clock is called “modeH1clk”.

Now let’s revisit those clock attribute values.| thle PLL tap clocks still exist on the clkmux/Z
pin:

pt_shell> get_attribute [get_pins clkmux/Z] clocks
{"hsclk_p0", "hsclk_p1", "hsclk_p2", "modeH1clk", " hsclk_p4", "hsclk_p3",
"hsclk_p5", "hsclk_p6", "hsclk_p7"}

But they stop there. If we look at the dividerpflolock pin downstream, for example, we now
have only modeH1clk:

pt_shell> get_attribute [get_pins div2clk_reg/CP] c locks
{"modeH1clk"}

SNUG San Jose 2007 31 Where have all the phases gone?

And get_clock_network objects now shows only ttkencix input and output pins:

pt_shell> get_clock_network_objects -type pin hsclk _po
{"clkmux/z", "clkmux/10"}

The new generated clock has blocked the pll tagkslérom propagating beyond its creation
point. This is a “feature” (or maybe just a prapeof generated clocks (and non-generated
clocks, for that matter). When you create a gardralock on a point, it blocks propagation of
all other clocks through that point.

4.4.2 The HS output clock

Since our output is source synchronous, we needette a divide-by 1 generated clock on the
clock output port clkout (see [1]). But there am® paths from the clkmux to the clkout port —
one through the inverter hsclkinv, and one arotindHow will PT know which to use?

And here’s where we come to a fork in the roade fiilst draft of this paper, prepared with
version 2006.06-SP2, had a long explanation of Rhydidn't get this right and how to get
around it. But then 2006.12 arrived, and, lo aelddtd, they fixed it!

| don’t wish to belabor you with now-irrelevant dés related to now obsolete tool versions, but
| think some background is in order here for thiosg-time PT users to fully appreciate this
change.

In all versions prior to 2006.12, PT ignored edgeersion in the path to a generated clock. This
is best illustrated with an example.

Using 2006.06-SP2, suppose we were to just craateutput clock like this:

create_generated_cl ock \
-name modeH1clkout \

-source [get_attribute[get_cl ocks modeH1clk] sources] \
-comb \

-master_clock modeH1clk \

-add \

[get _port s clkout]

And apply some output delays:

set _output_delay -min [expr -1 * 0.1] -clock modeH1clkout][get ports dout]
-add_delay
set _out put _delay -max 0.5 -clock modeHlclkout[get ports dout] -add delay

SNUG San Jose 2007 32 Where have all the phases gone?

| use “-add_delay” on all set_output_delay commatsause | will be applying output delays
relative to multiple clocks and | don’t want to keteack of which one goes first.

Put extra delay on the inverter to make it standirothe timing reports:

set _annotated_delay 1.0 -cell -from hsclkinv/I

Here’s the max timing report:

report_timing -delay max -to dout -path full_clock__

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by modeH1clko
Path Group: modeH1clkout

Path Type: max

Point Incr

clock modeH1clk (rise edge) 2.50
clock hsclk_p5 (source latency) 0.00
PLL8/CKOUTS5 (DUMMYPLLS) 0.00
clkmux/I5 (mx08d1) 0.00
clkmux/Z (mx08d1) (gclock source) 0.62
doutregclkmux/10 (mx02d0) 0.00
doutregclkmux/Z (mx02d0) 0.22
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32

dout (out) 0.00

data arrival time

clock modeHZ1clkout (rise edge) 6.50
clock hsclk_p5 (source latency) 0.00
PLL8/CKOUTS5 (DUMMYPLLS) 0.00
clkmux/I5 (mx08d1) 0.00
clkmux/ZAmx08d1), (gclock source) 0.62
clkoutmix/10 (mx04d0) 0.00
clkoutmu mx024d0) 0.28
clkout (out) 0.00

output external delay -0.50

data required time

data required time
data arrival time

slack (MET)

SNUG San Jose 2007 33

-to hsclkinv/ZN

expanded -input

flop clocked by modeH1clk)

ut)

Where have all the phases gone?

That looks OK. Now look what we get for a min tagireport (in 2006.06-SP2):

report_timing -delay min -to dout -path full_clock__

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by modeH1clko
Path Group: modeH1clkout

Path Type: min

Point Incr
clock modeH1clk (rise edge) 2.50
clock hsclk_p5 (source latency) 0.00
PLL8/CKOUTS5 (DUMMYPLLS) 0.00
clkmux/I5 (mx08d1) 0.00
clkmux/Z (mx08d1) (gclock source) 0.62
doutregclkmux/10 (mx02d0) 0.00
doutregclkmux/Z (mx02d0) 0.20
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32
dout (out) 0.00
data arrival time
clock modeH1clkout (rise edge) 2.50
clock hsclk_p5 (source latency) 0.00
PLL8/CKOUTS5 (DUMMYPLLS) 0.00
clkmux/I5 (mx08d1) 0.00
X 1) (gclock source) 0.59
0.00
0d0) 1.00 *

X mx04d0) 0.00
clkoutmux/Z (mx04d0) 0.26
clkout (out) 0.00
output external delay 0.10
data required time
data required time
data arrival time
slack (VIOLATED)

SNUG San Jose 2007 34

expanded -input

flop clocked by modeH1clk)

ut)

Where have all the phases gone?

You can see that the max capture path bypasseadviréer, and the min capture path went
through it. We have the classic “promiscuous cCigukblem.

Max Patt
(\;ﬁ-‘o 2 clkout
| @W N it
T
. clkoutmux

[r Min Patf J
din

CROUT:

L s fo
GKOUTY| b Q dout
[o a

CHOUTZ)
" mwz
clkin GrOUTS)
[»—————=—cKrREF PLLs |—)~\3 divack dout_reg

ooutg>—— | vesKreg 10

CROUTH * :

'\\5 oty oP an ! & oS

cKouTemE_/’ P 5 doutregclkmux

CROUTT——]
clksel[0] i
> -
clksel[1]
clksel[2]
lssel
Figure 4-7

But there’s another problem with this trace. Netihat the timing check is rise-to-rise off the
same edge from PLL8/CKOUTS5, but it's using an imwvey clock path. If it's using an inverted
capture path, it should have been 2.50 vs 0.50.tifeacheck would have been wrong even if the
non-inverting path didn’t exist.

clock modeH1clkout (rise edge) 2.50 Q 2.50
clock hsclk_p5 (source latency) 0.00 2.50
PLL8/CKOUTS5 (DUMMYPLLS) 0.00 2.50 O
clkmux/I5 (mx08d1) 0.00 2.50
clkmux/Z (mx08d1) (gclock source) 0.59 3.09f
hsclkinv/I (inv0d0) 0.00 3.09f
hsclkinv/ZN (inv0d0) 1.00 * 4.09r
clkoutmux/12 (mx04d0) 0.00 4.09r
clkoutmux/Z (mx04d0) 0.26 4.35
clkout (out) 0.00 4.35
output external delay 0.10 4.45
data required time 4.45
data required time 4.45
data arrival time -3.64
slack (VIOLATED) -0.82

The 2.50 time corresponds taising edge at the PLL (tap 5 at 500ps/tap). Yet it shapas a
falling edge at the PLL output. So, all the subsequemstiane bogus — they're the wrong edge!

SNUG San Jose 2007 35 Where have all the phases gone?

So, not only did the clock take the wrong pathdtiyh the inverter), the launch time of the path
in inconsistent with the path itself. The bottanelwas that, while PT would handle clock
inversions in register-to-registers paths just, findidn’t do this correctly for inversions in

generated clock paths.

Until now.

Let’s run that same min report using 2006.12:

report_timing -delay min -to dout -path full_clock_

kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkhkkk

Report : timing
-path_type full_clock_expanded
-delay_type min
-input_pins

paths 1

-max_|

kkkkkkkkkkkkkiFhhhkkkkkkkkkhkkthkkkkkkhkkk

Startpoint: dout_reg (rising edge-triggered flip-

Path Group: modeH1clkout
Path Type: min

Point Incr

clock modeH1clk (rise edge) 2.50
clock hsclk_p5 (source latency) 0.00
PLL8/CKOUTS5 (DUMMYPLLS) 0.00
clkmux/I5 (mx08d1) 0.00
clkmux/Z (mx08d1) (gclock source) 0.62
doutregclkmux/10 (mx02d0) 0.00
doutregclkmux/Z (mx02d0) 0.20
dout_reg/CP (dfnrb1) 0.00
dout_reg/Q (dfnrbl) 0.32

dout (out) 0.00

data arrival time

clock modechIkout (rise edge) 2.50
clock h ce latency) 0.00
PLLS CKOUTS (DUMNMYPLLS) 0.00
clikmux/15 (mx08d1) 0.00
clkmux/Z (mx08d1) (gclock source) 0.62
clkoutmux/10 (mx04d0) 0.00
clkqutmux/Z (mx04d0) 0.30
clko 0.00

output externat delay 0.10

data required time

data required time
data arrival time

slack (MET)

SNUG San Jose 2007

expanded —input

flop clocked by modeH1clk)
Endpoint: dout (output port clocked by modeH1clko ut)

36

Where have all the phases gone?

The capture path no longer goes through the invattalll Which is correct, since we created a
divide-by 1 (“~-comb”) generated clock addin’t use the —invert switch (an example using the
-invert switch is coming up next). And, the lauraetd capture times are both correct. It all just
works!

So, PT now understands that a divide-by 1, nonrimgeclock should take a non-inverting path.
Well, what happens if there isn't one?

Try this:

renmove_cl ock modeH1clkout
di sconnect _net [get _net hsclk] [get _pi ns clkoutmux/I0]
create_generated_cl ock \

-name modeH1clkout \

-source [get_attribute[get_cl ocks modeH1clk] sources] \
-comb \

-master_clock modeH1clk \

-add \

[oget_ports clkout]

o]

= z clkout

|| iz (:5 -
- 1

invsel / &l
din]
CKOUTY
\—)7\0
ceom——) | o a dout
o Q —
CKOLITE—)—‘
clkin >
CKOUTS,
— - PLLs N k18 dout_reg
CKOUTA—)—‘ -
14] 2
CKOUTS;
™ s clkmux - - an 11 cF an
CKOUTG*)—‘ E—
(3 [E
CKOLIT?—)—‘
alksal[0] ’
[— col
clksel[1]
clksel[2]
Issel

Non-inverting path now gone
Figure 4-8

So, we disconnected the non-inverting path, leawoinly the inverting path, but then created a
non-inverting —comb generated clock. What will R now?

SNUG San Jose 2007 37 Where have all the phases gone?

If you do update_timing, you get this:

is not satisfiable; zero

is not satisfiable; zero

source latency will be used.
(UITE-461)

UITE-461 isa new PT warning indicating exactly this problem!

This is an important point to understand. UITE-4&icates there’s somethimgongwith your
clock creation commands! If you run an old scwith 2006.12 and get UITE-461, then the
script was broken before and your previous timeguits were probably wrondDo not ignore
UITE-461.

For a detailed explanation of how generated claténicies were derived in various version of the
tool, please see solvnet artiditps://solvnet.synopsys.com/retrieve/015752.html

4.4.3 Mode H2

So, now lets define a high-speed mode settingdbeshave invsel on:

set modeH2(clksel_setting) 3
set modeH2(invsel_setting) 1
set modeH2(Issel_setting) 0

As with H1, we create the clkmux clock:

First, the clkmux clock
create_generated_cl ock \

-name modeH2clk \

-source [get _attribute[get_cl ocks hsclk_p${modeH2(clksel_setting)}]
sources] \

-comb \

-master_clock hsclk_p${modeH2(clksel_setting)} \

-add \

[get _pins clkmux/Z]

SNUG San Jose 2007 38 Where have all the phases gone?

To keep things simple, the H1 mode code above @htre invsel_setting value and just created
a non-inverting output clock. For H2, let’'s expdhd code to create the inverted or non-
inverted version based on the invsel_setting value.

We could use two different create_generated_cltatiesients, controlled by an “if”. But | like
to be sure that thenly difference is the —invert switch, so I'm goingdo it a little differently.

I'll use the “if” to create a string variable comtiag the —invert switch (or null, if invsel_setyjiris
false), then use “eval’ to make TCL expand thealde before evaluating the statement:

i f { $modeHZ(invsel_setting) == 1}H{
set invertarg {-invert }
} else{
set invertarg {}

Create the output clock with the correct -inver t setting
eval create_generated_clock \
-name modeH2clkout \

-source [get_attribute[get_cl ocks modeH2clk] sources] \
-comb \

-master_clock modeH2clk \

-add \

Sinvertarg \

[oget_ports clkout]

Apply the output delays:

set _output_delay -min [expr -1 * 0.15] -clock modeH2clkout][get ports dout]
-add_delay
set _out put _delay -max 0.7 -clock modeH2clkout][get ports dout] -add_delay

Since we now have multiple clocks, we need setkclgmoups to keep them separated:

Separate the modes

set _cl ock_groups -name muxed_out -physically exclusive \
-group [get _cl ocks modeH1*] \
-group [get _cl ocks modeH2*]

SNUG San Jose 2007 39 Where have all the phases gone?

Now when we run that same report for modeH2, weseanthe inverted capture path:

report_timing -delay min -to dout -path full_clock_ expanded -input -group
modeH2clkout
Startpoint: dout_reg (rising edge-triggered flip- flop clocked by modeH2clk)
Endpoint: dout (output port clocked by modeH2clko ut)

Path Group: modeH2clkout
Path Type: min

Point Incr Path
clock modeH2clk (rise edge) 5.50 5.50
clock hsclk_p3 (source latency) 0.00 5.50
PLL8/CKOUT3 (DUMMYPLLS) 0.00 5.50r
clkmux/I3 (mx08d1) 0.00 5.50r
clkmux/Z (mx08d1) (gclock source) 0.63 6.13r
doutregclkmux/10 (mx02d0) 0.00 6.13r
doutregclkmux/Z (mx02d0) 0.20 6.33r
dout_reg/CP (dfnrb1) 0.00 6.33r
dout_reg/Q (dfnrbl) 0.32 6.65r
dout (out) 0.00 6.65r
data arrival time 6.65
clock modeH2clkout (rise edge) 3.50 3.50
clock hsclk_p3 (source latency) 0.00 3.50
PLL8/CKOUT3 (DUMMYPLLS) 0.00 3.50f
0.00 3.50f
(gclock source) 0.58 4.08 f
hsclkmv/l (inv0dO) 0.00 4.08 f
hsclklnv/ZN (vadO 1.00 * 5.08r
0.00 5.08 r
0.26 5.34r
clkout (out) 0.00 5.34r
output external delay 0.15 5.49
data required time 5.49
data required time 5.49
data arrival time -6.65
slack (MET) 1.15

Notice that the capture clock is now launched Bllimg edge at the appropriate time, and goes
through the hsclkinv path.

SNUG San Jose 2007 40 Where have all the phases gone?

4.5 Low-speed Modes
So much for high-speed modes, now let’s look atdirespeed (divided clock) modes.
45.1 Mode L1

We define the settings:

ModelL1 settings

set modeL1(clksel_setting) 3
set modeL1(invsel_setting) 0
set modelL1(Issel_setting) 1

Which implies a clock flow like this:

Output gen’d clock

\—;ror z clkoLt
T
—_— clkoutmux
din]
GROLIT
L b)
c><ou'r1e'—_>;‘1 r o §7Edcg
cxoumev—_>_ \—FD
2
clkin GHOLITSY
PLLs m \ dout_reg
o)
CKREF croud \ div2clk_reg| o —
[
T ——
GKOUTS|
5 Clmide— '\Cp‘; an i T P an
CKOUTG%—\—F‘E & — —/F doutregelkmux
CROUTT \
clksel[0] §
[
clksel[1]
L= H 1
Div-2 gen’d clock

) Div-2 inverted gen’'d clock
Div-1 gen’d clock

Figure 4-9

4.5.2 Creating the clocks

Create the pll tap clock based on the clksel_sgpttaue as before:

SNUG San Jose 2007 41 Where have all the phases gone?

Create modelL1 clocks
create_generated_cl ock \
-name modeLlclk \

-source [get_pins "PLL8/CKOUT${modeL1(clksel_setting)}"] \
-comb \

-master_clock hsclk_p${modeL1(clksel_setting)} \

-add \

[get _pins clkmux/Z]

The dout_reqg flop (in low-speed mode) always dge¢sdivide-by 2 non-inverted clock, so we
create that:

create_generated_cl ock \
-name modeL1div2clk \
-source [get_attribute[get_cl ocks modelLlclk] sources] \
-divide_by 2\
-master_clock modelLlclk \
-add \
[get _pins div2clk_reg/Q]

The output clock, however, is selectable betwesnctbck and an inverted version of this clock
that comes from the QN output of the divider flop.

Since this clock is not created by an inverter kROws nothing about it. So, we will need to
create this as a generated clock. | prefer tatereaegardless of the setting of invsel_settmg t
make sure any noise issues are covered.

So, how do you create a divide-by 2, inverted cldckasy - using —divide_by 2 and —invert.

create_generated_cl ock \
-name modeL1div2clkN \

-source [get_attribute[get_cl ocks modelLlclk] sources] \
-divide_by 2\

-invert \

-master_clock modelLlclk \

-add \

[get pins div2clk_reg/QN]

SNUG San Jose 2007 42 Where have all the phases gone?

Take a look at the report_clock output (after adaip_timing):

report_clock

Attributes:
p - Propagated clock
G - Generated clock
| - Inactive clock

Clock Period Waveform Attrs

hsclk_pO 4.00 {02}

p
hsclk_p1 4.00 {0.52.5} p
hsclk_p2 4.00 {13} p
hsclk_p3 4.00 {1.53.5} p
hsclk_p4 4.00 {24} p
hsclk_p5 4.00 {2.54.5} p
hsclk_p6 4.00 {35} p
hsclk_p7 4.00 {3.55.5} p
modeH1clk 4.00 {2.54.5} p, G
modeH1clkout 4.00 {2.54.5} p, G
modeH2clk 4.00 {1.53.5} p, G
modeHZ2clkout 4.00 {3.55.5} p, G
modeL1clk 4.00 {1.53.5} p, G
modeL1div2clk 8.00 {1.55.5}
modeL1div2clkN

8.00 {5.59.5}

Sources

{PLL8/CKOUTO0}
{PLL8/CKOUT1}
{PLL8/CKOUT2}
{PLL8/CKOUT3}
{PLL8/CKOUT4}
{PLL8/CKOUTS5}
{PLL8/CKOUT6}
{PLL8/CKOUT7}
{clkmux/Z}
{clkout}
{clkmux/Z}
{clkout}
{clkmux/Z}

{div2clk_reg/Q}

{div2clk_reg/QN}

The waveform of the non-inverted divided clock 1s§ 5.5} (tap 3 means shift of 1.5). The
waveform of the inverted divided clock is {5.5 9.6hp 3 shift of 1.5 plus half a period).

4.5.3 Handling the output clock

OK, so now we have both positive and negative ghatthe divide-by 2 clock. One of these
will be used as the output clock, based on théngedf invsel setting. The simplest way to do
this is just to make the master clock for clockawariable, and use the variable in creating

clkout:

i f { $modeL1(invsel_setting) == 1}H{
set modelLlclkout master modeL1ldiv2clkN

} else{

}

Finally, the output clock
create_generated_cl ock \
-name modeL1clkout \

set modeLlclkout _master modeLldiv2clk

-source [get_attribute[get_clocks $modelLlclkout_master] sources] \
-comb \
-master_clock $modelL lclkout_master

-add \
[get _port s clkout]

SNUG San Jose 2007

Where have all the phases gone?

Set output delays and clock groups as usual:

set _output_delay -min [expr -1 * 0.25] -clock modeLlclkout |

-add_delay

get _port s dout]

set _out put _delay -max 1.7 -clock modelLlclkout[get _ports dout] -add_delay

Separate the modes

set _cl ock_groups -name muxed_out -physically exclusive \

-group [get _cl ocks modeH1*] \
-group [get _cl ocks modeH2*] \
-group [get _cl ocks modelL1*]

But this isn’'t going to work. Spot the problem?2keE a look at this report:

report_timing -delay min -to dout -path full_clock_
modeL1clkout

Startpoint: dout_reg (rising edge-triggered flip-
Endpoint: dout (output port clocked by modeL1clko
Path Group: modeL1clkout

Path Type: min

Point Incr

clock modeL1clk (rise edge) 1.50
clock hsclk_p3 (source latency) 0.00
PLL8/CKOUT3 (DUMMYPLLS) 0.00
cIkmux/I3 mx08d1) 0.00

0. 32
dout ((out) 0.
data arrival time

clock modeL 1clkout (rise edge) 1.50
clock hsclk_p3 (source latency) 0.00
PLL8/CKOUT3 (DUMMYPLLS) 0.00
clkmux/I3 (mx08d1) 0.00
clkmux/Z (mx08d1) (gclock source) 0.63
div2clk_reg/CP (dfnrbl) 0.00
div2clk_reg/Q (dfnrbl) (gclock source)

0.41

clkoutmux/11 (mx04d0) 0.00
clkoutmux/Z (mx04d0) 0.25
clkout (out) 0.00
output external delay 0.25
data required time

data required time
data arrival time

slack (VIOLATED)

SNUG San Jose 2007 44

expanded -input -group

flop clocked by modeL1clk)

ut)

2.65

Path should go through div2clk_reg!

1.50

150r
150r
2.13r
2.13r

2.54r
2.54r
279r
279r
3.04
3.04

Where have all the phases gone?

dpout_req is getting modeL1clk directly, insteadrmafdeL1div2clk. Because of the
dourtregclkmux, the undivided modelL1clk also hagsth directly to the dout_reg flop, bypassing
the divider.

\—}pr clkout
/ | W zN i 5 |
;‘— clkoutmux
invsel (o
din]
CROUT: " f
[+}
CROUTHS—— " 5 a / = .b>|:>q =
CKOUT2$—|_>_‘2
clkin GHOUTS)
PLL8 dout_reg
[»———————=ckreF s
CROUTSF——] x = i ’_h~—“-_____f——&P o5
CKOLITEm -’P d _—
" 3 doutregclkr
CROUTT——] '
clksel[0] "
> %
clksel[1]
>
clksel[2] /
lssel .
Actual path Desired path
Figure 4-10

In normal operation, this path would be blockedh®s programming of Issel_setting. But since
we're doing all modes in parallel, we can’t do this

Fixing this with steering clocks could get reallgssy, since we don’'t want to block the high-

speed mode clocks. This is one of those timeswaheock kill switch is so valuable. Instead of
steering clocks, we can just kill the undivideddldck at the mux 10 (high-speed) input:

set _cl ock_sense -stop -clock modelLlclk[get pi ns doutregclkmux/IO]

SNUG San Jose 2007 45 Where have all the phases gone?

Now the trace is correct:

report_timing -delay min -to dout -path full_clock__ expanded -input -group
modeL1clkout

Startpoint: dout_reg (rising edge-triggered flip- flop clocked by
modeL1div2clk)

Endpoint: dout (output port clocked by modeL1clko ut)

Path Group: modeL1clkout
Path Type: min

Point Incr Path
clock modeL1div2clk (rise edge) 1.50 1.50
clock hsclk_p3 (source latency) 0.00 1.50
PLL8/CKOUT3 (DUMMYPLLS) 0.00 150r
clkmux/I3 (mx08d1) 0.00 150r
clkmux/Z (mx08d1) (gclock source) 0.63 2.13r
div2clk_reg/CP (dfnrbl) 0.00 2.13r
div2clk_reg/Q (dfnrbl) (gclock source)

0.38 251r
doutregclkmux/I11 (mx02d0) 0.00 251r
doutregclkmux/Z (mx02d0) 0.17 2.68r
dout_reg/CP (dfnrb1) 0.00 2.68r
dout_reg/Q (dfnrbl) 0.32 3.00r
dout (out) 0.00 3.00r
data arrival time 3.00
clock modeL 1clkout (rise edge) 1.50 1.50
clock hsclk_p3 (source latency) 0.00 1.50
PLL8/CKOUT3 (DUMMYPLLS) 0.00 150r
clkmux/I3 (mx08d1) 0.00 150r
clkmux/Z (mx08d1) (gclock source) 0.63 2.13r
div2clk_reg/CP (dfnrbl) 0.00 2.13r
div2clk_reg/Q (dfnrbl) (gclock source)

0.41 2.54r
clkoutmux/11 (mx04d0) 0.00 2.54r
clkoutmux/Z (mx04d0) 0.25 2.79r
clkout (out) 0.00 2.79r
output external delay 0.25 3.04
data required time 3.04
data required time 3.04
data arrival time -3.00
slack (VIOLATED) -0.04

45.4 Mode L2

We can define another low-speed mode and use the sart of code. But this time we’ll turn
invsel_setting on:

set modelL2(clksel_setting) 7
set modelL2(invsel_setting) 1
set modelL2(Issel_setting) 1

SNUG San Jose 2007 46 Where have all the phases gone?

Create modeL2 clocks
create_generated_cl ock \
-name modelL2clk \

-source [get_pins "PLL8/CKOUT${modeL2(clksel_setting)}"] \
-comb \

-master_clock hsclk_p${modeL2(clksel_setting)} \

-add \

[get_pins clkmux/Z]

Create both pos and neg divided clocks

create_generated_cl ock \
-name modeL2div2clk \
-source [get_attribute[get_cl ocks modelL2clk] sources] \
-divide_by 2\
-master_clock modelL2clk \
-add \

[get_pins div2clk_reg/Q]

create_generated_cl ock \
-name modelL2div2clkN \
-source [get_attribute[get_cl ocks modelL2clk] sources] \
-divide_by 2\
-invert \
-master_clock modelL2clk \
-add \

[get_pins div2clk_reg/QN]

i f { $modeL2(invsel_setting) == 13{
set modelL2clkout_master modeL2div2clkN
} else{
set modelL2clkout_master modeL2div2clk

}

Finally, the output clock
create_generated_cl ock \
-name model 2clkout \

-source [get_attribute[get_clocks $modelL2clkout_master] sources] \
-comb \

-master_clock $modeL 2clkout_master \

-add \

[get_ports clkout]

set _out put_delay -min [expr -1 * 0.25] -clock modeL2clkout [get _port s dout]
-add_delay
set _out put _del ay -max 1.7 -clock modeL2clkout [get _ports dout] -add_delay

Separate the modes
set _cl ock_groups -name muxed_out -physically_exclusive \
-group [get_cl ocks modeH1*] \
-group [get_cl ocks modeH2*] \
-group [get_cl ocks modeL1*] \
-group [get_cl ocks modelL2*)

SNUG San Jose 2007 47 Where have all the phases gone?

When doing the clock sense, instead of doing a camdnfor each low-speed mode, we can just
kill all modeL* clock coming into pin 10 of the mux

set _cl ock_sense -stop -clock [get_cl ocks modelL*][get_ pi ns doutregclkmux/10]

Similarly, we should kill any modeH* clocks goinigrough pin 11 of the mux:

set _cl ock_sense -stop -clock [get_cl ocks modeH*][get pi ns doutregclkmux/I1]

Here’s the hold timing report on dout for this mode

report_timing -delay min -to dout -path full_clock_ expanded -input -group
modeL2clkout

Startpoint: dout_reg (rising edge-triggered flip- flop clocked by
modeL2div2clk)

Endpoint: dout (output port clocked by modelL2clko ut)

Path Group: modeL2clkout
Path Type: min

Point Incr Path
clock modeL2div2clk (rise edge) 11.50 11.50
clock hsclk_p7 (source latency) 0.00 11.50
PLL8/CKOUT7 (DUMMYPLLS) 0.00 11.50r
clkmux/I7 (mx08d1) 0.00 11.50r
clkmux/Z (mx08d1) (gclock source) 0.71 12.21r
div2clk_reg/CP (dfnrbl) 0.00 12.21r
div2clk_reg/Q (dfnrbl) (gclock source)

0.38 12.60r
doutregclkmux/I11 (mx02d0) 0.00 12.60r
doutregclkmux/Z (mx02d0) 0.17 12.76r
dout_reg/CP (dfnrb1) 0.00 12.76r
dout_reg/Q (dfnrbl) 0.32 13.08r
dout (out) 0.00 13.08r
data arrival time 13.08
clock modeL2clkout (rise edge) 7.50 7.50
clock hsclk_p7 (source latency) 0.00 7.50
PLL8/CKOUT7 (DUMMYPLLS) 0.00 7.50r
clkmux/I7 (mx08d1) 0.00 7.50r
clkmux/Z (mx08d1) (gclock source) 0.71 8.21r
div2clk_reg/CP (dfnrbl) 0.00 8.21r
div2clk_reg/QN (dfnrb1) (gclock source)

0.33 8.55r
clkoutmux/13 (mx04d0) 0.00 8.55r
clkoutmux/Z (mx04d0) 0.25 8.80r
clkout (out) 0.00 8.80r
output external delay 0.25 9.05
data required time 9.05
data required time 9.05
data arrival time -13.08
slack (MET) 4.03

SNUG San Jose 2007 48 Where have all the phases gone?

4.6 Other considerations

4.6.1 H* mode divide-by 2 clocks

Although they are never used for functional purgosee clock divider register is toggling in
high-speed modes and therefore we should creathvide-by 2 clocks for proper noise analysis.
This isn't strictly necessary, but it is a good ihédo make sure all clocks are created, even ¥ the
aren’t used as clocks in that mode.

create_generated_cl ock \
-name modeH1div2clk \
-source [get_attribute[get_cl ocks modeH1clk] sources] \
-divide_by 2\
-master_clock modeH1clk \
-add \
[get _pins div2clk_reg/Q]

create_generated_cl ock \
-name modeH1div2clkN \
-source [get_attribute[get_cl ocks modeH1clk] sources] \
-divide_by 2\

-invert \
-master_clock modeH1clk \
-add \

[get pins div2clk_reg/QN]

create_generated_cl ock \
-name modeH2div2clk \
-source [get_attribute[get_cl ocks modeH2clk] sources] \
-divide_by 2\
-master_clock modeH2clk \
-add \
[get _pins div2clk_reg/Q]

create_generated_cl ock \
-name modeH2div2clkN \
-source [get_attribute[get_cl ocks modeH2clk] sources] \
-divide_by 2\

-invert \
-master_clock modeH2clk \
-add \

[get pins div2clk_reg/QN]

The “set_clock _sense —stop_propagation” of H* tgtoll of the mux shown earlier will prevent
these clock from reaching the dout_reg.

4.6.2 Issel_setting

SNUG San Jose 2007 49 Where have all the phases gone?

The astute reader may have noticed that we newealycused the control value Issel_setting. In
a set_case_analysis flow, this value would be ts@dnfigure the circuit for either high-speed or
low-speed operation. In our examples, the valug ‘maplicit” in the mode — H1, H2, L1, L2.

The creation of clocks depended on this impliditiisg.

In a more generic implementation, this value migdvused in a main if/then/else construct to
control which set of cod is run (“H” code or “L” de)

4.6.3 Control logic

In the real circuit, it is likely that the dividesthd undivided clocks will go off to blocks of cowitr
logic as well as the output circuit:

10
\—}.r 2 clkout
| |hs zN o —
5
clkoutmux
invsel 51
—
GKOUT:
L5 fo
cKouﬂa—‘ D Q dout
" o Q =
CroUTZS——)
2
clkin CKOIJTBm
> CKREF PLLE I3 civack_reg dout_reg
cKouum - 10
4 z
GKOUTS|
e s O | . an U £ O%Qi
CKOUTGm\e S s doutregclkmux
CrouT>——
clksel[0] '
[—
clksel[1]
clksel[2]
\ 4
Issel
low-speed logic
5
0 [~
z
ﬁ i
high-speed logic
Figure 4-11

SNUG San Jose 2007 50 Where have all the phases gone?

This is where the clock kill switch (set_clock _serstop_propagation) is absolutely essential.
The logic blocks will generally be identifiable their hierarchy paths (although the instance name
itself will likely be flattened), so you can do sethning like:

foreach_in_collectionclkk|[get_cl ocks modelL*]{
set _cl ock_sense -stop_propagation -clock $clk [get _pins*_hsctl * reg/CP*]

}

SNUG San Jose 2007 51 Where have all the phases gone?

5 Conclusion

Multiclock propagation is an essential STA techeigo ensure noise-accurate analysis across all
operating modes of the chip. Care must be take@msare that clock paths originate where they

are supposed to and propagate only where theypposed to. The latest version of PrimeTime
(2006.12) provides new features that make thisnabh easier.

SNUG San Jose 2007 52 Where have all the phases gone?

6 Acknowledgements

The author would like to acknowledge the followpepple for their assistance and review:
Chris Papademetrious, Synopsys

Stuart Hecht, Independent ASIC Design Consultant
Hichem Belhadj, Actel Corporation

SNUG San Jose 2007 53 Where have all the phases gone?

7 References

(1) Complex Clocking Situations Using PrimeTime
Paul Zimmer
Synopsys Users Group 2001 San Jose
(available atvww.zimmerdesignservices.cdm

(2) Working with DDRs in PrimeTime
Paul Zimmer, Andrew Cheng
Synopsys Users Group 2002 San Jose
(available atvwww.zimmerdesignservices.cdm

(3) My Favorite DC/PT Tcl Tricks
Paul Zimmer
Synopsys Users Group 2003 San Jose
(available atwww.zimmerdesignservices.cym

(4) Working with PLLs in PrimeTime — avoiding the “plealecked oops”
Paul Zimmer
Synopsys Users Group 2005 San Jose
(available atvww.zimmerdesignservices.com

(5) Getting DDRs “write” — the 1x Output Circuit Reves
Paul Zimmer
Synopsys Users Group 2006 San Jose
(available atvww.zimmerdesignservices.com

SNUG San Jose 2007 54 Where have all the phases gone?

8 Appendix

8.1 Complex Circuit at Full Page Size

SNUG San Jose 2007 55 Where have all the phases gone?

invsel

Z

clkout

i

clkin

clksel[0]

GKREF

PLLs

CHROUT

CkOoUT1

CROUTZ)

CHROUTS

CHROUTS;

CKOUTEY

CHROUTE]

CKOUTY]

=
clksel[1]

——

clksel[2]

clkrmux

Z

CP

divaclk_reg|

QM

s doutregclkmux

cP

dout_reg

clkoutmux

dout

56 Where have all the phases gone?

SNUG San Jose 2007

